CETIFICATION

SDG No:

FA34367

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Groundwater

SUMMARY:

Sample FA34367-4 was collected on the BRSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 27-31, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA34367. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA34367-4	SB-102-GWD	Groundwater	VOA TCL List
			(tert-butyl alcohol)

Mendez

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 4, 2016

1586485

SGS Accutest LabLink@169352 14:36 30-Jun-2016

Report of Analysis

Page 1 of 2

Client Sample ID:	SB-102-GWD		
Lab Sample ID:	FA34367-4	Date Sampled:	05/31/16
Matrix:	AQ - Ground Water	Date Received:	06/01/16
Method:	SW846 8260C	Percent Solids:	n/a

Project:	BMSMC,	Building	5 Arca,	Humacao,	PR
----------	--------	----------	---------	----------	----

- Ma	Run #1 Run #2	File ID J0976947.D J0976974.D	DF 1 10	Analyzed 06/01/16 06/02/16	By DP DP	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Ba VJ5324 VJ5326
------	------------------	--------------------------------------	---------------	----------------------------------	----------------	-------------------------	--------------------------	-----------------------------------

	Purge Volume	-		
Run #1	5.0 ml			
Run #2	5.0 ml			

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.46	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l	
75-15-0	Carbon Disulfide	0.67	2.0	0.23	ug/l	J
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l	_
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.63	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	0.49	1.0	0.26	ug/l	J
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l	•
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l	
75-34-3	1, I-Dichloroethane	ND	1.0	0.26	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l	39
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l	ESTEDA
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l	100
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l	1
76-13-1	Freon 113	ND	1.0	0.32	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	1.7	1.0	0.33	ug/l	
	MALE TO THE RESERVE OF THE PARTY OF THE PART					

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: **SB-102-GWD** Lab Sample ID: FA34367-4

Matrix: AQ - Ground Water Method: SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 05/31/16 Date Received: 06/01/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

Project:

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltaluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09 - 2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	85.5	1.0	0.20	ug/i	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	1330 a	200	91	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	11.1	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63 - 6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	0.55	2.0	0.30	ug/l	j
95-47-6	o-Xylene	ND	1.0	0.26	ug/i	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	E	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	100%	103%	79-125%
2037-26-5	Toluene-D8	104%	107%	85-112%
460-00-4	4-Bromofluorobenzene	106%	104%	83-118%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

EXECUTIVE NARRATIVE

SDG No:

FA34367

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

This is a revise narrative for SDG FA34367. It applies only to tert-butyl alcohol in sample FA34367-4. The sample was analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. 1,1-dichloroethene % difference outside the guidance validation document in the ending calibration verification of 06/01/16. No action taken, professional judgment.
- 2. Several analytes recovered outside the laboratory control limits but within generally acceptable control limits in samples FA34367-3MS/-3MSD. RPD for 1,2-dichloropropane over the laboratory control limits. No action taken, professional judgment.

tert-butyl alcohol recovered over the upper laboratory control limits in samples FA34367-

1MS/-1MSD. No action taken, non-detects are accepted.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 4, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA34337-4

Sample location: BMSMC Building 5 Area Sampling date: 5/31/2016

Matrix: Groundwater

METHOD: 8260C

cis-1,2-Dichloroethene	1,1-Dichloroethene	1,2-Dichloroethane	1,1-Dichloroethane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichlorobenzene	Dichlorodifluoromethane	1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	Dibromochloromethane	Cyclohexane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	2-Butanone (MEK)	Bromoform	Bromodichloromethane	Bromochloromethane	Benzyl Chloride	Benzene	Acetone	Analyte Name
1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	5.0	1.0	0.47	1.0	2.0	1.0	1.0	0.67	5.0	1.0	1.0	1.0	1.0	1.0	25	Result
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units Di
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor
•		ŧ	1	1	•	1	1	1	•	•	_	ı	•	ı	B	_				,	•	1	1	Lab Flag
C	C	C	_	C	C	C	C	C	C	C	٤	C	C	C	_	⊆	_	_	C	C	C	C	C	Validation
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Reportable

		p.	
40		w	
	-		

Vinyl chloride m,p-Xylene o-Xylene	1,2,4-Trimethylbenzene	Trichloroethene Trichlorofluoromethane	1,1,2-Trichloroethane	1,1,1-Trichloroethane	1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	Toluene	Tetrahydrofuran	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Tert-Butyl Alcohol	Tert-Amyl Alcohol	Styrene	Methyl Tert Butyl Ether	4-Methyl-2-pentanone(MIBK)	Methylene chloride	Methylcyclohexane	Methyl Chloride	Methyl Bromide	Methyl Acetate	p-IsopropyItoluene	Isopropylbenzene	2-Hexanone	Freon 113	Ethylbenzene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1,2-Dichloropropane	trans-1,2-Dichloroethene
1.0 0.55 1.0	1.0	1.0	1.0	1.0	2.0	2.0	1.0	11.1	1.0	1.0	20	20	1.0	85.5	5.0	5.0	1.0	2.0	2.0	20	1.0	1.7	10	1.0	1.0	1.0	1.0	1.0	1.0
ug/L ug/L ug/L	n8/r	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	⊔g/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug∕L	ug/L	ug/L
1.0 1.0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
, -,		į.		1	1	•		1		i.	ì	1	i	ï	i.		1	ř			ř.		,	i	e.			3	
c	C C	- C	C	C	C	C	C	1	_	_	C	_	_	1	C	C	C	C	_	C	_	1	_	C	C	_		_	C
Yes Yes Yes	Yes Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Reviewer: Date:___

	Project Number:_FA34367 Date:May_27-31,_2016 Shipping date:May_31,_2016 EPA Region:2
REVIEW OF VOLATILE ORGA Low/Medium Volatile Data	
The following guidelines for evaluating volatile organization actions. This document will assist the reviewer more informed decision and in better serving the needs of assessed according to USEPA data validation guidan precedence: USEPA Hazardous Waste Support Scommon Sommon	r in using professional judgment to make f the data users. The sample results were ce documents in the following order of ection SOP No. HW-33A Revision 0 2015. The QC criteria and data validation
The hardcopied (laboratory name)Accutestbeen reviewed and the quality control and performance VOCs included:	data package received has data summarized. The data review for
Lab. Project/SDG No.:FA34367	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
_OverallComments:VOA_TCL_list_(SW846_8260C)_ tert-butyl_alcohol_in_sample_FA34367-4 Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect/	_the_validation_report_applies_only_for_
Paviower all Mart	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	<u> </u>	
	- 1000	
		<u> </u>
	0	
	2 10 10 - 2	
		- V

All criteria were met _	X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples an	alyzed within method	recommended holding	time.	Sample preservation within
required criteria.				
required criteria.				

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.9° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

				Action	
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 days	No q	ualification	
Aguanua	No	> 7 days	J	R	
Aqueous	Yes	≤ 14 days	No qualification		
	Yes	> 14 days	J	R	
Non-Aqueous	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No q	ualification	
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No qualification		
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification		
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J R		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J R		
Sample tempera upon receipt at t	ture outside 4°C ± 2°C he laboratory	Use professional judgment		
Holding times g	rossly exceeded	J	R	

All criteria were met _	X_	
Criteria were not met see below		

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X__ The BFB performance results were reviewed and found to be within the specified criteria.
__X__ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.					
List	the	samples	affected:		
lf mann anlibuniin		Jaka a.a			

If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see below X

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

	Date	e of initi	al calibration:0	5/23/16	05/24/16	
	Date	es of co	05/24/16	_		
	Date	es of co	ntinuing calibration:_	06/01/16	06/01/16	
	Date	es of er	nding calibration:	06/01/16	06/01/16	_
	Inst	rument	GCMSJ	_		
	Mat	rix/Leve	el:Aqueous/low		Aqueous/low	_
					•	
ΓE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES	

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, %D, r		AFFECTED
GCMSC				
06/01/16	ECC4602-4	-22.3	1,1-dichloroethene	FA34367-2; -3
			<u> </u>	

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the validation guidance document required criteria. Closing calibration check verification included in data package.

% difference in the ending calibration verification outside the validation guidance document required criteria. No action taken, professional judgment

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

	Minimum	Maximum	Opening	Closing
Analyte	RRF	%RSD	Maximum %D1	Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1,2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1,2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1,2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25,0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1,1,2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1.2.3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound	1	-		·
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-de	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-de	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1,2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF = Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
•RSD > Maximum •RSD in Table for target analyte	J	Use professional judgment	
%RSD = Maximum %RSD in Table for target analyte	No qualification	No qualification	

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	A	ction
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF Minimum RRF in Table for target analyte	No qualification	No qualification
⁹ Doutside the Opening Maximum ⁹ D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	ţ	tu
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table—for target analyte	No qualification	No qualification

All criteria were metX	
Criteria were not met	
and/or see below	

CONCENTRATION

BLANK ANALYSIS RESULTS (Sections 1 & 2)

LAB ID

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

DATE

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

COMPOUND

I FVFI /

ANALYZED		MATRIX		UNITS
			'S	
Field/ <u>Equipme</u>	nt/Trip blank			
If field or trip bla the method blar		t, the data reviev	ver should evaluate this	data in a similar fashion as
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			oment_blanksNo_field	_blanks_analyzed_with
	<u> </u>			
		-		

All criteria were met _X	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL *	< CRQL*	Report CRQL value with a U
	CRQL	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,		≥ CRQL* and ≤	Report blank value for sample
Trip,	> CRQL *	blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB,		blank concentration	110 quantication required
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U
	>CRQL*	No qualification required	
	Gross	Detects	Report blank value for sample
contamination	Detects	concentration with a U	

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 μ g/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					-
				ach.	
	and the	100	-		
	and all the				
	-th				
	1				
1000		-			·
-				-	

All criteria were met __X__ Criteria were not met and/or see below ____

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

All criteria were met	
Criteria were not met	
and/or see belowX	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

N	n	T	F	C	•
м		1	_	o	

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

detects are accepted.

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

	FA34367-3MS/3MSD FA34367-1MS/1MSD		Matrix/Level: Matrix/Level:	Soil Aqueous
MS OR MSD	COMPOUND	%R RPD	QC LIMITS	ACTION
	_recovery_and_RPD_wi IS/MSD		ontrol_limits_excep	ot_for_the_following:
	_Bromoform			
_MSD	_Carbon_tetrachloride_	73_%	78133	No_action
_MS/MSD	_1,2-dichloropropane	26_	25	No_action
MS	Methylcyclohexane	73%	75128	No_action
_FA34367-1N	IS/MSD			
_MS/MSD	_t-butyl_alcohol	134/151_%	63129	No_action
Note:	No action taken, pro accepted control limits			
	No action taken, tert-	butyl alcohol was	s not detected in s	sample FA34367-1, nor

MS/MSD criteria apply to the unspiked sample. Unspiked sample belongs to from another data package.

* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	Χ
Criteria were not met	
and/or see below	_

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoverie	s_(blank_spike	e)_within_laboratory_control	_limits	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			this data package. MS/leria, < 50 % for target a duplicate.		
			- Gupirous.		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	X_
Criteria were not met	
and/or see below	_

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	tion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J+	R
Area counts $\geq 50\%$ but $\leq 200\%$ of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification	

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf

^{**} Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
Is the Relation standard RR initial calibrat	ve Retention Times (RRTs) of reported co T [opening Continuing Calibration Verificat ion].	ompounds within ±0.06 RRT units of the ion (CCV) or mid-point standard from the Yes? or No?
List compoun	nds not meeting the criteria described above	į.
Sample ID	Compounds	Actions
		n
		
spectrum fror calibration)] n a. b.	10% must be present in the sample spec The relative intensities of these ions standard and sample spectra (e.g., for standard spectrum, the corresponding 30-70%). lons present at greater than 10% in the	a: pectrum at a relative intensity greater than
List compoun	ds not meeting the criteria described above	
	and the children and a cook a cook and a cook a cook and a cook and a cook and a cook a cook and a	•
Sample ID	Compounds	Actions
		

Action:

- The application of qualitative criteria for GC/MS analysis of target compounds requires
 professional judgment. It is up to the reviewer's discretion to obtain additional information
 from the laboratory. If it is determined that incorrect identifications were made, qualify all
 such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List TICs

Sample ID	Compound	Sample ID	Compound
=======================================	=======================================		

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _X
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA34367-1

Dichlorodifluoromethane

RF = 0.334

[] = (209559)(50)/(0.334)(1262319) = 24.9 ppb Ok

B.	Percent Solids
	List samples which have ≥ 70 % solids

All criteria were met _X
Criteria were not met
and/or see below

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	100	
	- All Park	
1000		
3		'
-		

ОТН	IER ISSUES		All criteria were metX Criteria were not met and/or see below
A.	System Pe	rformance	
List	samples qualifi	ed based on the degradation of system perf	formance during simple analysis:
Sam	ple iD	Comments	Actions
No	_degradation_c	of_system_performance_observed.	
Actio	n:		
degra	aded during sa	udgment to qualify the data if it is determ ample analyses. Inform the Contract Labora n of system performance which significantly	atory Program COR any action as a
В.	Overall Ass	essment of Data	
List s	amples qualifi	ed based on other issues:	
Sam	ole ID	Comments	Actions
No_ _can	additional_issube_used_for_	ues_observed_that_require_qualification_of decission_purposes	_the_dataResults_are_valid_and_
Action	Use profess	ional judgment to determine if there is any	need to qualify data which were not
2.	Write a brie Inform the C Delivery Gro quality of the	sed on the Quality Control (QC) criteria previor finarrative to give the user an indication of contract Laboratory COR the action, any incomp (SDG) Narrative. If sufficient informations a data is available, the reviewer should include thin the given context. This may be used (DQA).	the analytical limitations of the data. nsistency of the data with the Sample n on the intended use and required their assessment of the usability of

SGS ACCU	TEST - FL	CHAII 3006.00 7012, 732-129	OF GS Accelest -0200 FAX: www.acceles	CUS'	roby	o do	eland) FL	1	•	3804		F	es Order Ca		10 10	F /_
Anderson Mulholland Associated 2700 Westchester Purchase NY Terry Taylor 914-251-0400	Project Name: BMS R. Banari Con Humacao Project P Cont Profession Order 9 Francial Manipular		Asses				Žą.	Mchod 8260C								DW - Dentiting Weins DW - Greated Weiler VWH - Winner SW - Barface Wrinin SD - Barface SLD - Barface CI - CI LIC - Chron Leved API - AP SDI - Corner Senio VWI - Weiler TRI- Pold Stark
The B / Fold of Collection	Int Chilli Vol 8	16 1030 16 1030 16 1320	TT GV TT SO TT SO TT SI TT SI	4 3 3	23	POSE A	HOUSE IN THE PARTY OF THE PARTY	-50/A								RO-Piese District TO-Try Diseas LAS USE ONLY
Tunns toold Time (Buttoness days) Stat. 19 Beninsus Days Four Sail Skings 5 Day Ridds	Apparator by Dillik Assessed Fig.	States		Chair writed "A" (t erated "B" (1				Sangary S		Aaa	tok			traky	dro fe	/^\$^
D Day Right 2 Day Right 1 Day	Sappala Custo	sed E	FULLY Superior Superi	1 (Laured Se Second section "C" sets of Kreen s Papaylo Ca Pamajo + Cal	Charley Per rig, Carronn Surrousey of surplies old languages	I By:	State For 8.00 For Other ,, perting Pends + 0 pedstore, considers,	TRACE	courter	P-1; T6+ Sample telluny	ATION CONTROL	PY FIM I	toluc Aw	ne, B benz	4/24	chloride

FA34367: Chain of Custody Page 1 of 3